
Hi! This tutorial shows you, the soon-to-be proud owner of a chatroom application, what the
&^$*^*!” you are supposed to do to make one.
First – no, don't do that. Stop it. Really, leave it alone.
Good.
First, you need to create a new application, by pressing Ctrl+N.
Second, click the application in the Workspace Toolbar (Ctrl+W)Change the following properties of
the application.
The Settings tab:

● Include external files: Check. This will make sure that all files you add later (for example,
On Message sound) will be included in the installer automatically.

● Compress the runtime: Uncheck. This is a essential thing to do with any Internet-accessing
application; the main program usually extracts to a temporary (randomly generated) folder,
making it use up less memory. If you have a firewall enabled, this will set it off every time it
runs, as the temporary folder has a random name – so every time it will change, and your
firewall will detect this as a new app trying to connect.

● Enable debugger keyboard shortcuts: Uncheck. This is a personal preference, and
recommended if you are a beginner; unchecking this will stop any accidental key
combination pressing from doing anything horrible with your app's debugger

Switch to the second tab, Window.

The Window Tab:

● Border colour: Change to anything non-basic. Using a basic colour will make your app
unpopular – Bright/Full/Basic colours are an absolute no-no. You may, however, use black –
for some strange reason everyone loves it.

● No maximize box: Check. If people maximize your app, they will see the frame surrounded
by the border colour. Not very professional. Checking this means the user cannot maximize
your app.

● No thick frame: Check. Again, if people change the size of your app, they will see the frame
surrounded by the border colour. What's worse, they can resize the window to be too small,
meaning that they can't see some of the frame, and its very hard to readjust it to what it used
to be. Checking this means the user cannot resize your app's window.

● Menu bar: Uncheck. This is not used in the tutorial. Uncheck to avoid being unprofessional.
This will hide the application's menu, usually located just below the window's title.

● Menu displayed on boot-up: Uncheck. This is not used in the tutorial. Uncheck to avoid
being unprofessional. This will stop the menu (last bullet point) from appearing on start-up
of the app.

Move onto the next tab, Runtime options.

The Runtime Options Tab:

● Run when minimized: Check. An essential setting to use, as this lets the application run
when its minimized...if it doesn't run, the program may receive no messages and/or
terminate the connection to the server. Either way, not good.

● Run when resizing: Check. This one doesn't just apply to resizing the app; it can also apply
to changing data in memory – for example, holding down a button. If it doesn't run, the
program may receive no messages and/or terminate the connection to the server.

● Do not share data if run as a sub-application: Check. This is a weak blocker for hacking
attempts, it stops accessing of data in certain parts of the program, by certain other
programs. If you are running this program using the Sub-Application object, then you
should leave it unchecked. Otherwise, check it.

● Multi-samples: Uncheck. This is unneeded unless you plan to play more than one sound at a
time – which will usually make all of the sounds inaudible.

● Do not mute samples when application loses focus: Check. This ensures that if the app plays
a music file (certain types are known as samples) and the application is minimized or not
selected by the user, it will still play, rather than automatically stopping.

● Initial # of lives: Set to 0. This changes the number of lives to 0 – a personal preference.
● Default Controls: Set by clicking the Edit button, then the X in each column, and then

changing each key to 1. (1 is a random key.) This is also a personal preference.

The About Tab:

● Name: Change to what you want your application name to be. I picked The Cool Chat
Program, but that's just me

● Icon: Change to what you want your application icon to be. I just copied the icons into Paint
and inverted the colours (Ctrl+I).

● Filename: To change this, save the MFA by pressing Ctrl+S.
(Note about Help file: Although there is a help file, there's no point putting it in here – as it
will most likely be installed to somewhere else.)

● Author: Enter your nickname and/or your first and last name.
● Copyright: put ©[year] by [Author box text] - “©2010 by SortaCore” for me.

(To insert a ©, hold down left Alt, and press 0169 on the Number Pad, then release Alt.)

Click the Frame and select the third tab. Change the name (Main is my default when the application
has only one frame).

The Settings Tab:

● Background colour: Change to any non-basic colour; one that's not basic, bright or full,
excluding the cool black.

● Fade In: Change to any setting. This changes the way the frame starts up in the application.
My default one is fade from black, 1 second.

● Fade Out: Change to any setting. This changes the way the frame ends in the application.
My default one is fade to black, 1 second.

Switch to the second tab, Runtime options.

The Runtime Options Tab:

● Number of objects: Change to 100. This is the maximum number of objects the memory
will use – as we will be using about 10, we change it to the minimum, 100. This has a small
effect on the memory usage – professional.

● Timer-based movements: Uncheck. This will disable the timer for movements – there is no
movements in this tutorial.

● Movement timer based: Set to 0. This is mainly a personal preference, to make it easier to
confirm the movement timer is disabled.

Now the good stuff: Double-click the frame in the Workspace window, and then press Ctrl+W (hide
the workspace window – its not needed any more).

The Frame Editor Configuration
Wanna know how to make that difference?

Follow these steps:
Step 1: Create a button object.
Step 2: Make the button text bold (3rd tab).
Step 3: Then clone it to these settings: → →
Step 4: Create a Rich Edit object.
Step 5: Switch to first tab on the Rich Edit
object, then change the following settings:

Use System Colours: Uncheck. This
will allow the Rich Edit object to use
any colour it wants.
No colour change when disabled: Check. This allows the Rich Edit object to keep its
colour when its window is disabled.
Read only: Check. This will disallow the user to edit or overwrite the text.
Use features: Check. This will allow the option below.
Automatic detection of URLs: Check. This will make URLs change to their default font

setting: blue and underlined.
Step 6: Create an Editbox object.
Step 7: Switch to first tab on the Editbox object, then check the Read-only setting.
Step 8: Clone the object (2 rows, 1 column).
Step 9: Create an Lacewing object (downloadable from
http://lacewing.aquadasoft.com/Lacewing.zip in case you don't have it already)
Step 10: Create a list object
Step 11: Renaming (switch to last tab):

Button 1 → Connect.
Button 2 → Normal Message.
Button 3 → Private Message.
Button 4 → Help
Button 5 → Quit
Rich Edit object → Messages
Editbox 1 → Send Message
Editbox 2 → Username
Lacewing client → Lacewing
List → Users online

http://lacewing.aquadasoft.com/Lacewing.zip

Step 12: Positioning and resizing:
Connect: (497,24); 143 by 32
Normal Message: (0,425); 170 by 32
Private Message: (175,425); 170 by 32
Help: (351,425) 73 by 32
Quit: (424,425); 73 by 32
Messages: (0,0); 494 by 424
Message to send: (0,457); 640 by 23
Username: (496,0); 143 by 23
Users online: (497,56); 142 by 400
Step 13: Select Lacewing and switch to the first tab. Check Automatically clear stack – this means
that all the messages don't wait to be sent and/or are kept in memory after being sent.
You have successfully created the chatroom's frame layout!
The result should look like this:

Now we move onto the gears and levers of the chatroom – the Events, editable in the Event Editor.
Switch to the Event Editor by clicking this button:

The Event Editor Configuration

If you are a careful reader, or just very boring, you'll notice there's a lot. Let's walk and talk.
This is the format the events will be written in:
Objects will be written in blue, unless they are a parameter.
String parameters will be written in red.
Value parameters will be written in brown.
Option parameters will be written in green.

Event #
+(“Object”) Condition 1
+(“Object to retrieve condition from”) Condition 2
-Object: Action 1
-Object 2: Action 2
That is an example. Do not hold it to me, even if you want to. Let's get on with it.
Create 2 groups of events (GoE) and set one:
Name: Connect.
Activate on frame start: Yes.
And the second:
Name: Chat.
Activate on frame start: No.

Event #2 (Event #1 is the Connect GoE.)
+Frame object: Start of Frame
-Send Message: Control>Read only> On. This stops fools trying to send messages before they're
connected.
-Messages: Control>Set Text to Loading... This is because all other Set Text will begin with
“Newline$+”. This makes the Messages object look more professional as it doesn't have a empty
line at the top of it.

Event #3
+Connect: Button clicked
-Connect: Disable.
-Lacewing>Connect to server aquadasoft.com on port 6121. This is a well-used public server.
-Username: Control>Read only>On. This stops fools trying to change their username while the
program's connecting, then getting bothered when they're halfway through editing it when it runs
the Set Name command and they're stuffed with half the username that they wanted.
-Messages: Control>Set Text to Newline$+Connecting... If we don't keep everyone up-to-date on
what's happening, it looks like its doing nothing...not good.

Event #4
+Lacewing: Connection>On Connect
-Messages: Control>Set Text to Newline$+Setting name... Keep 'em up to date
-Lacewing: Set Name to Edittext$(“Username”) This will also work for renaming a user, but we're
not using renaming in this chatroom.

Event #5
+Lacewing: Channel>On join
-Send Message: Control>Read only>Off. This allows everyone to put characters into the editbox so
they can chat.
-Normal message: Enable. This allow the Send Normal Message button to work.
-Private message: Enable. This allow the Send Private Message button to work.
-Messages: Control>Set Text to Newline$+Channel joined, you may now chat. Keep 'em up-to-date
-Special object: Group of events: Deactivate Connect Otherwise something might go wrong
-Special object: Group of events: Activate Chat Now the Send Message commands will work
Now the next GoE: Chat.

Event #9
+Special object:Group of events>On group activation
-Lacewing: Peers>Select>Loop This will allow us to list all the users on the channel and add them
to the Users online object using event #10.

Event #10
+Lacewing>Channel>Peer>On peer loop
-Users online: Add line Peer_Name$(“Lacewing”)

Event #11
+Lacewing>Channel>Peer>On peer connect
-Users online: Add line Peer_Name$(“Lacewing”) This adds the joined user to the list, informing
the program's owner that someone joined (next action)
-Messages:Control>Set Text Newline$+“**** ”+Peer_Name$(“Lacewing”)+“ Enters Chat ****”

Event #12
+Lacewing>Channel>Peer>On peer disconnect
-Users online: Delete line FindStringExact(“Users online”, Peer_Name$(“Lacewing”), -1) This
deletes the user that left from the list, informing the program's owner that someone left (next action)
By the way, the -1 indicates that the search for the string should start at the start of the list object.
-Messages: Control>Set Text Newline$+“**** ”+Peer_Name$(“Lacewing”)+“ Left Chat ****”

Event #13
+Mouse & Keyboard>Keyboard>Repeat while Control is pressed [Negate] This is the shortcut key
+Mouse & Keyboard>Keyboard>Upon pressing Enter for normal messages.
+Special object: Compare two general values>Edittext$(“Send Message”) <> “”
OR (logical) <> means Different to.
+Normal message: Button clicked This is the other way of triggering the Send Message command.
+Special object: Compare two general values>Edittext$(“Send Message”) <> “”
-Lacewing: Send>Text>To channel: Edittext$(“Send Message”) on subchannel 0
-Messages: Control>Set Text to Newline$+“<”+Self_Name$(“Lacewing”)+”> ”+Edittext$(“Send
Message”) <Messaging User> Example message format.
-Send Message: Control>Set Text “” This stops the user from having to clear the Send Message box
themselves – more professional.

Event #14
+Mouse & Keyboard>Keyboard>Repeat while Control is pressed This is the shortcut key for
+Mouse & Keyboard>Keyboard>Upon pressing Enter private messages (Ctrl+Enter)
+Special object: Compare two general values>Edittext$(“Send Message”) <> “”
OR (logical)
+Private message: Button clicked
+Special object: Compare two general values>Edittext$(“Send Message”) <> “”
-Lacewing: Peer>Select>By name: List Select$(“Users online”) The current selected user on the
list.
-Lacewing: Send>Text>To peer: Edittext$(“Send Message”) on subchannel 1 1 just because.
-Messages: Control>Set Text to Newline$+“<”+List Select$(“Users online”)+“: ”+Edittext$(“Send
Message”)
-Send Message: Control>Set Text “”

Event #15
+Lacewing: Message>Sent>On text channel message, subchannel 0
-Messages: Control>Set Text to Newline$+“<”+Peer_Name$(“Lacewing”)+“> ”+Received$
(“Lacewing”) This means that you will receive normal messages in much the same way you send
them.

Event #16
+Lacewing: Message>Sent>On text peer message, subchannel 1

-Messages: Control>Set Text to Newline$+“>”+Peer_Name$(“Lacewing”)+“: ”+Received$
(“Lacewing”) Private messages are displayed differently when received than when sent. This is
because, when sending, you need to know who you're sending it to, and what you're sending; when
you're receiving, however, you need to know who sent it and what the message was.

Event #17
+Mouse & Keyboard>Keyboard>Upon pressing Escape This is the Quit event.
OR (logical) Important.
+Quit: Button clicked
-Messages: Files>Save RTF Text Apppath$+“Log.rtf”
-Frame object: End the application

Event #18
+Mouse & Keyboard>Keyboard>Upon pressing F1 This will bring up MMF2 help, just close it
OR (logical) again. This is the Help event, important too.
+Help: On button clicked
-Special object: Execute an external program>With an evaluated pathname:
Program name: notepad.exe
Command-line: Apppath$+“help.txt”
Hide and/or wait: Hide.

Well done! Your application now works, and is a efficient chatroom, although basic.
There are still several optional features you can add. The most important one to think of is the help
file. To create it, press WinKey+R, type notepad.exe and then edit the text document. Make sure
you save it in your application's directory, as help.txt!
Author's notes:
Creator: SortaCore
Program: Basic chatroom
Features: Normal chatting, private chatting, connecting and disconnecting, using Lacewing protocol.
Frames: 1.
Frame 1 Name: Main.
Frame 1 objects: 10.
Frame 1 object species: 5.
GoE count: 2.
Event count: Exclusive 15, inclusive 20.
Author's comments:
“I am the Manager and Head Programmer for Darkwire Software. Please visit my site at http://tinyurl.com/darkwire”

http://tinyurl.com/darkwire

