
 BASIC OBJECT

Load
program block: load the internal basic program
from string: load a source from a string
from file: load from file selector, program must
have .BAS extension.

Run
All: From start

from line: Set the staring line number

Re-Run
All: From start
from line: Set the staring line number

Set Value

Integer: Set the integer value for an internal variable,
remember those variables are case sensitive and may

have max 20 chars length.
Float: Set a float value for a variable.
String: Set string content for a string variable.

Clear
Variables

Program: Clear variable and program

Program Running
An Always & notable condition, return true when block of

program is running.

Check for Error
An Error occurred during last running or parse state.

Everything Ok
All Ok during last running state.

On Tag Set
If in block of program a MMFTAG is issued and the name
correspond (no case sensitive) this condition will be

executed.

Get
Integer: Get the integer value for an internal variable.
Float: Get a float value for a variable.

String: Get string content for a string variable.

Error
Number: number of last error.
String: text of last error occured.

Gosub
Execute the code from line X and return value

variable in RETMMF command.

Integer: Get the integer value for an internal variable.
Float: Get a float value for a variable.

String: Get string content for a string variable.

 COMMANDS

 LIST line(s)

 List the specified program lines. For example,

 LIST 10, 100-200

 lists line 10, and lines 100 through 200, inclusive.

 RUN [line]

 Begin execution of the program at the first line, or at the
 specified line. All variables are cleared.

 RUN file[,line]

 Load and run a program. For example,

 RUN "FOO ", 30

 loads a program from the file FOO.BAS and begins execution at
 line 30.

 RERUN [line]

 Begin execution of the program at the first line, or at the
 specified line.

 NEW

 Erase the program in memory.

 CLEAR

 Clean all variables.

 LOAD file

 Load a program into memory. The program previously in memory is

 erased. The file name should be in quotes; a .BAS extension is
 automatically added. Files contain ASCII listings of the programs.
 All lines in the file must begin with a line number, but line
 numbers do not need to be in increasing order.

 MERGE file

 Load a program into memory. The previous program remains in
 memory; if a line exists in both programs, the newly loaded

 line is kept.

 SAVE file

 Save the program in memory to a file.

 DEL line(s)

 Delete the specified program lines. Line numbers may be

 separated by commas and dashes as in LIST. If used inside
 a program, DEL will terminate execution only if it deletes
 the line on which it appears.

 RENUM [start[,inc]]

 Renumber program lines. By default, the new sequence is 10,20,30,...
 The first argument is a new initial line number; the second argument
 is the increment between line numbers.

 STATEMENTS

 REM comment

 A remark; ignored. Comments may contain any characters except
 that REM can not be immediately followed by an alphanumeric

 character.

 [LET] var = expr

 Assign a value to a variable. Variable names contain up to 20
 significant characters, consisting of upper- and lower-case

 letters, digits, underscores, and dollar signs. Variable names
 are case-sensitive. Variables hold real numbers normally, or
 strings of up to 255 characters if their names end with $.

 Examples:

 LET X=20
 X$="FOO"

 X$=X$+"BAR"

 DIM var(dimensions), ...

 Allocate memory for arrays. Arrays may have up to 4 dimensions,
 ranging from 1 to the value specified in the DIM statement.

 The same name must not be used for both a simple variable and
 an array.

 If an array is used before it is dimensioned, each dimension
 is set to 10.

 Example:

 INPUT "How many elements? "; x
 DIM array(x,1)
 FOR i=1 TO x : INPUT array(i,0), array(i,1) : NEXT

 PRINT items

Print the items on the screen. Items may be either numeric or string expressions, and
may be separated by commas, semicolons, or nothing.

Print will be present in a message box, the title and icon of this message box can be
change using the following commands:

 MSGTIT [prompt] vars

 MSGICON vars o value

MB_OK 0
MB_OKCANCEL 1

MB_ABORTRETRYIGNORE 2
MB_YESNOCANCEL 3
MB_YESNO 4

MB_RETRYCANCEL 5

MB_ICONHAND 16
MB_ICONQUESTION 32

MB_ICONEXCLAMATION 48
MB_ICONASTERISK 64

MB_DEFBUTTON1 0

MB_DEFBUTTON2 256
MB_DEFBUTTON3 512
MB_DEFBUTTON4 768

 Numbers are normally terminated by spaces. To avoid this space,

 convert the number to a string with STR$.

 The line is terminated by a CR/LF, unless the item list ends
 with a comma or semicolon.

 The word PRINT may be abbreviated as a question mark.

 Examples:

 PRINT "1+2=", 1+2
 PRINT X$ "=" Z$;
 ? x; y+z

 INPUT [prompt;] vars

 If a prompt string is given, it is printed. Otherwise, a
 question mark is printed. The computer then waits for values
 for each variable to be entered. If several variables are
 listed, their names must be separated by commas.

 If the variables are numeric, their values may be entered
 on separate lines, or combined with commas. Any numeric expression

 is a valid response.

 If the variables are strings, each string is typed on a separate
 line. The characters typed are copied verbatim into the string.

 String and numeric variables may be not mixed in a single
 INPUT statement.

 Examples:

 INPUT X$

 INPUT "Type 3 numbers: "; X, Y, Z

 GOTO line

 Begin executing statements at the specified line. The line
 number may be any numeric expression.

 The word GO TO may be used instead of GOTO if preferable.

 IF condition THEN line/statements ELSE line/statements

 If the condition is true (i.e., the numeric expression has a
 non-zero value), the statements following the word THEN are

 executed. Otherwise, the statements following ELSE are
 executed. If there is no ELSE clause, execution proceeds
 to the next line in the program.

 A line number may be used after either THEN or ELSE, for an
 implied GOTO statement.

 END

 Terminate the program. An END statement is not required.

 STOP

 Terminate the program with an identifying "Break" message.

 FOR var = first TO last [STEP inc]
 {statements}
 NEXT [var]

 Execute {statements} repeatedly while the variable counts from
 "first" to "last," incrementing by 1, or by the STEP value if
 given. If the STEP value is negative, the variable counts

 downward.

 If "first" is greater than "last" (or less than if STEP is
 negative), execution proceeds directly to the NEXT statement,

 without executing the body of the loop at all.

 The variable name is optional on the NEXT statement.

 WHILE [condition]

 {statements}
 WEND [condition]

 Execute {statements} repeatedly until the WHILE condition (if
 given) becomes false, or until the WEND condition becomes true.
 This structure can emulate Pascal's WHILE-DO and REPEAT-UNTIL,
 or even both at once. If no conditions are given, the loop will

 never terminate unless the Evil GOTO is used.

 GOSUB line

 RETURN

 Execute the statements beginning at the specified line, then

 when RETURN is reached, return to the statement following the
 GOSUB.

 READ vars
 DATA values
 RESTORE line

 Read numeric or string values from the DATA statements. Reading
 begins at the first DATA statement in the program and proceeds
 to the last. Reading past the end the last DATA statement

 generates an error.

 The DATA values must be either numeric or string expressions,
 according to the type of variable being read. Reading the wrong

 kind of expression produces a Syntax Error.

 The RESTORE statement causes the next READ to re-use the first

 DATA statement in the program, or the first DATA statement on
 or after a particular line.

 ON expr GOTO line, line, ...
 ON expr GOSUB line, line, ...

 If the expression's value, rounded to an integer, is N, go to
 the Nth line number in the list. If N is less than one or is
 too large, execution continues at the next statement after
 the ON-GOTO or ON-GOSUB.

 MMFTAG(vars)
 Generate an event call like vars (string) in MMF event list (max 31 per run)

 Example:

 10 ….

 20 MMFTAG(“COUNTER”)
 30 …

 IN MMF
 Event List
 ONTAG(“COUNTER”) -> Actions

 RETMMF vars
 On Gosub from expression you can get a return for MMF, int, float or string, this is as
required.

 Example:

 10 ….

 20 ….: A$=”hello”
 30 RETMMF A$

 matching MMF should be

 ONGOSUB$(10)

 NUMERIC EXPRESSIONS

 x AND y

 Logical AND of two integers.

 x OR y

 Logical OR of two integers.

 x XOR y

 Logical XOR of two integers.

 NOT x

 Logical complement of an integer.

 x+y, x-y, x*y, x/y, x^y, -x

 Typical floating-point arithmetic operations.

 x=y, x<y, x>y, x<=y, x>=y, x<>y

 Comparisons; result is 1 if true, 0 if false.

 x MOD y

 Modulo of two integers.

 SQR x

 Square of X. Note that parentheses are not required if a function's
 argument is a single entity; for example, SQR SIN X needs no

 parentheses, but SQR(1+X) does.

 SQRT x

 Square root of X.

 SIN x, COS x, TAN x, ARCTAN x

 Typical trig functions, in radians.

 LOG x, EXP x

 Natural logarithm and e the power X.

 ABS x

 Absolute value of X.

 SGN x

 Sign of X: 1 if X is positive, 0 if zero, -1 if negative.

 INT x

 Convert double to Integer value, rounding all decimal.

 CEILING x

Returns the next highest integer that is greater than or equal to the specified
numeric expression.

 FLOOR x

Returns the nearest integer that is less than or equal to the specified numeric

expression.

 VAL x$

 Value of the expression contained in the string X$. For example,
 VAL "1+2" yields 3. X$ may be a single string literal, variable,
 or function, or a string expression in parentheses.

 OCCUR x$, y$

Returns the number of times a character expression occurs within another
character expression.

 ATC x$, y$ [,nOccurence]

Returns the beginning numeric position of the first occurrence of a character
expression within another character expression, without regard for the case of these

two expressions.

 CRLF$

 Returns a string with only CR/LF character as expression.

 ASC x$

 ASCII code of the first character in X$, or 0 if X$ is null.

 LEN x$

 Number of characters in X$.

 Precedence: Parentheses
 Functions (incl. NOT and unary minus)

 ^
 *, /, MOD
 +, -

 =, <, >, <=, >=, <>
 AND
 OR, XOR

 LEFT$ x$

Returns a specified number of characters from a character expression, starting
with the leftmost character.

 RIGHT$ x$

 Returns the specified number of rightmost characters from a character string.

 LTRIM$ x$

 Returns the specified character expression with leading blanks removed.

 RTRIM$ x$

Returns a character string that results from removing the trailing blanks from a

character expression.

 LOWER$ x$

 Returns a specified character expression in lowercase letters.

UPPER$ x$

 Returns the specified character expression in uppercase.

PROPER$ x$

Returns from a character expression a string capitalized as appropriate for proper
names.

 STRING EXPRESSIONS

 "string" or 'string'

 String literal. Single quotes are converted to double quotes
 internally.

 x$+y$

 Concatenation. Result must be 1024 characters or less.

 x$=y$, x$<y$, x$>y$, x$<=y$, x$>=y$, x$<>y$

 String comparisons; result is 1 if true, 0 if false.

 STR$(x)

 The number X expressed as a string of digits. No leading or

 trailing spaces are included; scientific notation is used
 if the absolute values is greater than 1E12 or less than 1E-2.

 CHR$(x)

 The character whose ASCII code is X.

 MID$(x$, y)
 MID$(x$, y, z)

 (Parentheses required.) The substring consisting of the first
 Z characters starting at position Y of string X$. Position 1
 is the first character of the string. If Z is omitted, 1024

 is used, i.e., the entire right part of the string.

 CONVENTIONS

 Multiple statements may be written on a line, separated by colons:

 10 INPUT X : PRINT X : STOP

 There is actually no difference between commands and statements;
 both can be used in or out of programs at will. Certain commands,

 such as NEW, will, of course, halt program execution.

 Line numbers may be any integer from 1 to 10000.

 Keywords must be written in all upper- or all lower-case; they are

 always converted to upper-case internally. Spaces are ignored in
 the input except between quotes. Square brackets are converted to
 parentheses. Missing closing quotes at the end of the line are

 added, as in the command:

 SAVE "PROGRAM

